This article was downloaded by:

On: 15 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Comments on Inorganic Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455155

Heterocyclic Selenium- and Tellurium-Nitrogen Compounds

Tristram Chiversa; Daniel D. Doxseea

^a Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada

To cite this Article Chivers, Tristram and Doxsee, Daniel D.(1993) 'Heterocyclic Selenium- and Tellurium-Nitrogen Compounds', Comments on Inorganic Chemistry, 15: 2, 109 — 135

To link to this Article: DOI: 10.1080/02603599308035839 URL: http://dx.doi.org/10.1080/02603599308035839

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Heterocyclic Selenium – and Tellurium – Nitrogen Compounds

TRISTRAM CHIVERS and DANIEL D. DOXSEE

Department of Chemistry, The University of Calgary, Calgary, Alberta, Canada T2N 1N4

Received July 7, 1993

The methods available for the synthesis of selenium-nitrogen (Se-N) heterocycles are discussed. The chemistry of phosphorus-containing Se-N and Te-N ring systems is described and compared with that of the corresponding S-N heterocycles. The $P_2N_4Se_2$ ring is a versatile ligand in transition-metal complexes. The use of ${}^{77}Se$ NMR and ESR spectroscopy in the characterization of cyclic Se-N systems is also presented.

Key Words: synthesis, selenium-nitrogen heterocycles, tellurium-nitrogen heterocycles, phosphorus-nitrogen-chalcogen rings, coordination complexes, ESR spectra, ⁷⁷Se and ¹²⁵Te NMR spectra

INTRODUCTION

Investigations of selenium-nitrogen (Se-N) and tellurium-nitrogen (Te-N) compounds have lagged behind the remarkable developments in sulfur-nitrogen (S-N) chemistry that have occurred in the past 20 years.^{1,2} To some extent this is the result of the

Comments Inorg. Chem. 1993, Vol. 15, No. 2, pp. 109-135 Reprints available directly from the publisher Photocopying permitted by license only © 1993 Gordon and Breach, Science Publishers SA Printed in Malaysia intrinsic instability of the Se(4p)–N(2p) π -bond compared to the relatively strong S(3p)–N(2p) π -bond.³ For example, whereas sulfur diimides, RN—S—NR, constitute an extensively studied class of S–N compounds, the selenium analogues, RN—Se=NR (with the exceptions of R = CF₃CO, CF₃SO₂) are thermally unstable at room temperature with respect to the formation of elemental selenium.⁴⁻⁶ Iminoselenyl chlorides RN—SeCl₂⁷ exhibit a similar instability, but the seleninylamine 'BuN—Se=O has been spectroscopically characterized.⁶

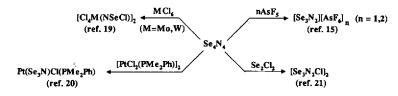
The possibility that the polymer (SeN), may exhibit even more unusual properties than those of the metallic superconductor (SN),8 has provided some of the impetus for current studies of Se-N compounds. The chemistry of binary Se-N species, which are potential precursors of this polymer, has been reviewed by Klapötke.⁹ There have also been significant advances in our knowledge of Se-N compounds containing other heteroatoms, e.g., C, P, S and transition metals, in the last 5-6 years. The primary focus of investigations of Se-N-C systems has been the design of low-dimensional molecular conductors, and recent developments have been reviewed by Oakley et al. 10 Metal complexes of Se-N ligands are included in the account of metal-stabilized chalcogen nitrides by Woollins et al., 11 and the structural aspects of Se-N and Te-N compounds have been documented by Bjorgvinsson and Roesky. 12 This Comment will attempt to complement these existing reviews on various aspects of Se-N chemistry. In particular an overview of synthetic approaches to Se-N heterocycles will be given and this will be followed by a discussion of the chemistry of Se-N-P systems. A final section will be devoted to NMR and ESR spectroscopic studies. Comparisons with analogous S-N systems will be made and, where appropriate, related developments in Te-N chemistry will be discussed.

PREPARATIVE METHODS

One of the major impediments to the development of Se-N (and Te-N) chemistry has been the lack of suitable starting materials. There are a variety of reagents that can be used for the synthesis of S-N heterocycles. 1,2,13 These include S_4N_4 , $(NSCl)_3$, NS^+ ,

 NS_2^+ , SN_2^{2-} , the sulfur imides S_7NH and $S_4N_4H_4$ (and anions derived therefrom), and silylated reagents such as $Me_3SiNSNSiMe_3$ and Me_3SiNSO . The only known selenium analogues of these reagents are Se_4N_4 and the thermally unstable $Me_3SiNSeNSiMe_3$.⁵

1. Tetraselenium Tetranitride


There are two well-established methods for the preparation of Se_4N_4 . The first involves the reaction of $(CH_3CH_2O)_2SeO$ with gaseous ammonia in benzene. This procedure has recently been adapted for the preparation of $Se_4^{15}N_4$ using stoichiometric amounts of $^{15}NH_3$. The second method uses the reaction of SeX_4 (X = Br, Cl) with ammonia at 70–80°C and modifications to this synthesis have also been described recently. An alternative preparation, which is both quick and efficient, involves the reaction of $(Me_4Si)_2NLi$ with a mixture of selenium chlorides.

$$12(Me_3Si)_2NLi + 2Se_2Cl_2 + 8SeCl_4 \rightarrow 3Se_4N_4 + 24Me_3SiCl + 12LiCl$$

Dry Se_4N_4 is an extremely dangerous material, which can explode at the slightest provocation, e.g., when touched with a metal spatula. It is essential, therefore, to store and handle this compound under an inert solvent (e.g., a hydrocarbon), to limit reactions to small amounts (<500 mg) of Se_4N_4 , and to wear appropriate protective clothing. ^{15,16}

The cage molecule S_4N_4 is a versatile source of other S-N compounds, e.g., S-N halides, S-N cations and anions, P-S-N rings, and transition metal complexes of S-N anions, 11,17,18 By comparison Se_4N_4 has found only limited applications for the preparation of other Se-N compounds (see Scheme 1).

The cation Se₃N₂²⁺, prepared by the oxidation of Se₄N₄ with

SCHEME 1 Preparation of Se-N compounds from Se₄N₄.

AsF₅, is a potentially useful reagent for the synthesis of other Se-N heterocycles, but no examples of its use have been reported.

2. Cyclocondensation Reactions with Selenium or Tellurium Halides

The most versatile method for the synthesis of Se-N heterocycles is cyclocondensation. This method usually makes use of Si-N reagents which react with sclenium halides with the elimination of chlorotrimethylsilane. The selenium halides Se₂Cl₂, SeCl₄ and SeOCl₂ are all readily available and examples of cyclocondensation reactions using selenium(IV) halides are given in Eqs. (1) and (2).

Selenium in a lower formal oxidation state can be generated in situ by using a mixture of Se₂Cl₂ and SeCl₄ in the appropriate amounts to give the desired Se:Cl ratio. The first example of this approach involved the synthesis of the dimers S₂Se₄N₄²⁺ from [(Me₃Si)₂N]₂S.²⁵

$$2[(Me_{3}Si)_{2}N]_{2}S + 2SeX_{4} + Se_{2}X_{2} \xrightarrow{-8Me_{3}SiX} [S_{2}Se_{4}N_{4}]X_{2}$$
 (3)

More recently this method has been used to prepare the eightmembered ring 1,5-Ph₄P₂N₄Se₂ in 85% yield from Ph₂PN₂(SiMe₃)₃.²⁶

Surprisingly, this reaction produces substantial amounts of 1,3- $R_4P_2N_4Se_2$, in addition to 1,5- $R_4P_2N_4Se_2$, when R = Me, Et.²⁷

An alternative source of selenium in a lower oxidation state is the in situ reduction of SeCl₄ with triphenylantimony. For example, the cyclocondensation of N,N,N'-tris(trimethylsilyl)benzamidine with "SeCl₂" in a 1:2 molar ratio provides an excellent route to the cyclic five-membered cation PhCN₂Se₂⁺. ²⁸

This procedure has been extended to the synthesis of the parent ring system $HCN_2Se_2^{+29}$ as well as derivatives in which two $CN_2Se_2^{+}$ rings are attached to an aromatic ring in 1,3- or 1,4-positions.³⁰ The eight-membered ring system $Ph_2C_2N_4S_2$ is a classic example of a planar, delocalized 10π -electron system.³¹ However, attempts to make the Se analogue by the cyclocondensation of $PhCN_2(SiMe_3)_3$ with "SeCl₃" have produced only the cation $PhCN_2Se_2^{+}$.³²

Organoselenium trihalides, RSeCl₃, are readily prepared by chlorination of organic diselenides. These reagents are thermally more stable than their sulfur counterparts and are well suited for the synthesis of Se–N heterocycles via cyclocondensation with trifunctional Si–N reagents. For example, the reaction of the phosphorus(V) reagent Ph₂PN₂(SiMe₃)₃ with RSeCl₃ produces the white eight-membered 1,5-Ph₄P₂N₄Se₂R₂ in excellent yields.³³ When R = alkyl, however, the formation of 1,5-Ph₄P₂N₄Se₂R₂ is accompanied by smaller amounts of the Se-dealkylated product 1,5-Ph₄P₂N₄Se₂. An alternative route to 1,5-Ph₄P₂N₄Se₂Ph₂ (55% yield) involves the reaction of Ph₂PN₂(SiMe₃)₃ with three molar equivalents of PhSeCl.³⁴

SCHEME 2 Reaction pathway for the formation of a diazene from PhCN₂(SiMe₃)₃ and PhSeCl in a 1:3 molar ratio.

$$\begin{array}{c}
NSiMe_{3} \\
2 Ph_{2}P \\
N(SiMe_{3})_{3}
\end{array}
+ 2RSeCl_{3} \xrightarrow{-6Me_{3}SiCl} Ph_{2}P \xrightarrow{N} PPh_{2}$$

$$\begin{array}{c}
R \\
Se \\
N
\end{array}$$

$$\begin{array}{c}
NSiMe_{3} \\
N
\end{array}$$

$$\begin{array}{c}
NSiMe_{3} \\
N
\end{array}$$

By contrast, the reaction of RSeCl₃ (R = Me, Ph) with PhCN₂(SiMe₃)₃ produces deeply colored (red or purple) diazenes which are isomers of the anticipated eight-membered rings.³⁵ The same product is obtained from the reaction of PhCN₂(SiMe₃)₃ with three molar equivalents of PhSeCl, which has been shown by ESR spectroscopy to occur via the formation of the resonance-stabilized radicals PhCN₂(SePh)₂.³⁶ (See Scheme 2.)

The only useful binary tellurium chloride for cyclocondensation reactions is TeCl₄ which produces a four-membered CN₂Te ring upon reaction with PhCN₂(SiMe₃)₃. 37

$$\begin{array}{c} NSiMe_{3} \\ PhC \\ N(SiMe_{3})_{2} \end{array} + TeCl_{4} \xrightarrow{-Me_{3}SiCl} \begin{array}{c} Me_{3} \\ Si \\ N \end{array}$$

$$\begin{array}{c} N \\ N \\ Si \\ Me_{3} \end{array}$$

$$\begin{array}{c} Me_{3} \\ N \\ N \\ Si \\ Me_{3} \end{array}$$

$$(7)$$

In a similar manner the reaction of Ph₂PN₂(SiMe₃)₃ with ArTeCl₃³⁸ or [Ph₂P(NSiMe₃)₂]Li with TeCl₄³⁹ produces the four-membered PN₂Te ring in excellent yields.

NSiMe₃

$$Ph_2P + R'TeCl_3 \xrightarrow{-Me_3SiCl} Ph_2P \xrightarrow{N} TeCl_2R'$$

$$R$$

$$(R = Li, R' = Cl; R = SiMe_3, R' = aryl)$$

$$(8)$$

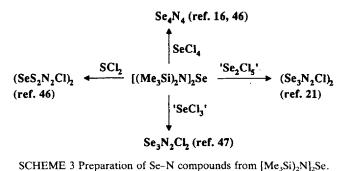
In these reactions of TeCl₄ with trifunctional Si–N reagents only one Te–Cl bond is reactive towards Me₃SiCl elimination. By contrast, the treatment of tellurium(IV) halides with the bifunctional reagent Me₃SiNSNSiMe₃ results in the conversion of three Te–X bonds into Te–N bonds to give a twelve-membered Te₃N₆S₃ ring in which pairs of tellurium atoms are bridged by an NSN group and a halogen, and a central nitrido atom bridges all three telluriums.^{40,41}

$$TeX_{4} + Me_{3}SiNSNSiMe_{3} \longrightarrow \begin{bmatrix} N & S & N \\ | & X & | \\ | & Te & N \\ | & N & | & N \\ | & X & | & X & |$$

The reaction of TeCl₄ with Me₃SiNSO gives the dinuclear complex Te₂N₂SCl₆,^{42a} which may be an intermediate in the formation of the aforementioned μ³-nitrido complex.

$$2\text{TeCl}_{4} + 2\text{Me}_{3}\text{SiNSO} \longrightarrow \begin{array}{c} Cl \\ Cl \end{array} \xrightarrow{\text{Te}} \begin{array}{c} Cl \\ Cl \end{array} + 2\text{Me}_{3}\text{SiCl} + \text{SO}_{2} \end{array}$$

$$(10)$$


The reduction of $Te_2N_2SCl_6$ with Ph_3Sb or the reaction of $TeCl_4$ with $S[N(SiMe_3)_2]_2$ in CH_2Cl_2 in a 1:1 molar ratio produces the five-membered ring $Cl_2TeNSNTe$, which reacts with AsF_5 in SO_2 to give $[ClTeNSNTe][AsF_6].^{42b}$

Selenium and Tellurium Reagents Containing Silicon-Nitrogen Bonds

Silicon-nitrogen compounds that also contain selenium-nitrogen bonds are potentially useful reagents for the preparation of Se-N heterocycles by cyclocondensation reactions. However, the only example of the application of the thermally unstable derivative Me₃SiNSeNSiMe₃⁵ for this purpose is the synthesis of Ph₄P₂N₃SeCl which must be conducted at low temperatures.⁴³

The singly bonded Se-N reagents $[(Me_3Si)_2N]_2Se_x$ (x = 1, 2), which are readily obtained from the reaction of (Me₃Si)₂NLi with Se₂Cl₂, ^{44,45} are thermally stable and potentially more useful than the unsaturated compound (Me₃SiN)₂Se. Some applications of these reagents in the preparation of Se-N heterocycles are given in Scheme 3.

The tellurium reagent [(Me₃Si)₂N]₂Te is obtained from the reaction of TeCl₄ with four molar equivalents of LiN(SiMe₃)₂.⁴⁴ Applications of this reagent for the synthesis of Te-N heterocycles seem likely. Interestingly, the oxidation of [(Me₃Si)₂N]₂Te by AgAsF₆ produces the radical cation $Te[N(SiMe_3)_2]_2^+$ as the black AsF₆ salt.⁴⁸

SCHEME 3 Preparation of Se-N compounds from [Me₃Si)₂N|₂Se.

4. Selenium-Nitrogen Halides

The most useful sulfur-nitrogen halide for the synthesis of other S-N heterocycles is the six-membered ring (NSCl)₃, which is prepared by chlorination of S₃N₂Cl₂. The selenium analogue (NSeCl)₃ is unknown and the chlorination of Se₃N₂Cl₂ produces a thermally unstable Se-N chloride which decomposes to give N₂ and selenium halides.²¹ The explosive black solid Se₃N₂Cl₂ is obtained in several ways: (a) from [(Me₃Si)₂N]₂Se and a mixture of SeCl₄ and Se₂Cl₂ designed to give a Se:Cl of 1:3 (see Scheme 3), (b) from [(Me₃Si)₂N]₂Se and SeOCl₂ in a 1:2 molar ratio, and (c) from Me₃SiN₃ and Se₂Cl₂ in a 2:3 molar ratio.^{21,47} The insolubility and thermal instability of this compound inhibit its use as a synthetic reagent. However, a number of Se-N chlorides, which represent potential building blocks for Se-N heterocycles, have been prepared recently.

The attempted synthesis of the SeN⁺ cation by the reaction of N(SiMe₃)₃ with SCl₃⁺ AsF₆⁻ in CFCl₃ at 0°C produced instead the N(SeCl₂)₂⁺ cation.⁴⁹

$$\begin{array}{ll} 6[SeCl_3][AsF_6] + 5N(SiMe_3)_3 & \rightarrow & 3[N(SeCl_2)_2][AsF_6] + 9Me_3SiF + 3AsF_3 + N_2 \\ & + 6Me_3SiCl \end{array} \tag{12}$$

The related reaction of N(SiMe₃)₃ with SeCl₄ in boiling CH₂Cl₂ yields red crystals of Se₂NCl₃.⁵⁰ This product reacts with GaCl₃ to give [N(SeCl)₂][GaCl₄] in which the cation adopts the horseshoe-shape (cis,cis-isomer) that is well established for the corresponding sulfur cation with various anions. The reduction of [N(SeCl)₂][GaCl₄] with Ph₃Sb generates the red five-membered ring Se₃N₂Cl⁺ (see Scheme 4).⁵¹

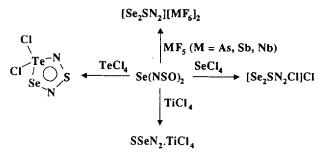
$$2SeCl_4 + N(SiMe_3)_3 \xrightarrow{-3Me_3SiCl} Se_2NCl_3$$

$$\downarrow GaCl_3$$

$$[Se_3N_2Cl][GaCl_4] \xleftarrow{Ph_3Sb} [N(SeCl)_2][GaCl_4]$$

SCHEME 4 Formation of the Se₃N₂Cl⁺ cation.

5. Selenium-Nitrogen Anions


Compared to the rich chemistry of sulfur–nitrogen anions, 52,53 our knowledge of Se–N anions is undeveloped. Solutions of SeCl₄ or SeOCl₂ in liquid ammonia apparently contain the anions Se₂N₂² and Se₂N₂H⁻, which can be trapped by complexation to a metal. 11,54,55

$$PtCl_2(PR_3)_2 + 2SeCl_4 + 8NH_3 \rightarrow Pt(Se_2N_2)(PR_3)_2 + 6NH_4Cl_1 + 2Cl_2$$
 (13)

A solution of Se_4N_4 in liquid ammonia at high pressure (ca. 50 atm) may also be used for the transformation shown in Eq. (13), leading to the intriguing possibility that such solutions contain the $Se_3N_3^-$ ion (since $S_3N_3^-$ is formed in liquid NH_3 solutions of S_4N_4). ⁵⁶ Although further applications of these anions in the synthesis of Se–N heterocycles and their spectroscopic characterization in solution can be anticipated, the potential hazards associated with handling such explosive materials, particularly in the isolation of crystalline salts, should not be underestimated.

6. Selenium and Tellurium Thionylimides

The reaction of Se₂Cl₂ with Me₃SiNSO produces yellow crystals of Se(NSO)₂ in excellent yields.⁵⁷ The corresponding tellurium compound Te(NSO)₂ is prepared from ('BuMe₂Si)₂Te and ClNSO in a 1:2 molar ratio.⁵⁸ As a result of the propensity of thionylimides to eliminate SO₂, Se(NSO)₂ is a fertile source of the unstable molecule SeSN₂, which can be trapped as an adduct with TiCl₄. Some examples of the use of Se(NSO)₂ in the synthesis of Se–N heterocycles are summarized in Scheme 5.^{46,59,60}

SCHEME 5 Preparation of Se-N heterocycles from Se(NSO)2.

SELENIUM-NITROGEN-PHOSPHORUS RINGS

Unsaturated Se-N-P rings of the type $(Ph_2PN)_x(SeN)_y$ are hybrids of the well-known cyclophosphazenes and a binary Se-N ring such as Se_4N_4 . Some known and potential members of this series of inorganic heterocycles are shown below.

The introduction of Ph₂PN units into an Se–N ring improves the thermal stability significantly. For example, both 1,3- and 1,5-Ph₄P₂N₄Se₂, 4 and 5, can be handled without fear of explosions whereas Se₄N₄ is an extremely dangerous material. In addition, ³¹P NMR spectroscopy provides an informative structural probe for the products of various reactions of these hybrid ring systems, especially for coordination complexes.

1. Radical Formation

Although the Se-N-P rings exhibit many similarities in structure and properties to those of their sulfur analogues, there are also significant differences. For example, a solution of 1,5-Ph₄P₂N₄Se₂ (5) in dichloromethane is thermochromic, being pale yellow at -20°C and green at 23°C.27 This green solution exhibits visible absorption bands at 634 and 653 nm and a five line (1:2:3:2:1) ESR spectrum, which has been attributed to the cyclic radical Ph_2PN_2Se . The corresponding sulfur system 1,5- $Ph_4P_2N_4S_2$ shows no tendency to dissociate to Ph₂PN₂S · radicals in solution, and this difference in behavior presumably reflects, in part, the relative weakness of Se-N compared to S-N bonds. A solution of 1,5-Ph₄P₂N₄Se₂ (5) in CH₂Cl₂ slowly deposits red selenium, and this decomposition has thwarted attempts to obtain crystals for the structural determination of this eight-membered ring.²⁷ A similar disintegration to elemental selenium has been observed for the homologous radical $Ph_4P_2N_3Se \cdot (2)$, which is prepared by the reduction of $Ph_4P_2N_3SeCl$ with $Ph_3Sb.^{43}$ The sulfur analogue of this radical, $Ph_4P_2N_3S.$, is known to dimerize to give a twelve-membered ring which contains a transannular S--S contact $[d(S-S) = 238.5 \text{ pm}].^{61}$ It is possible that $Ph_4P_2N_3Se.$ (2) dimerizes in a similar manner, but the formation of a cross-ring Se--Se bond promotes the elimination of red selenium, cf. 1,5- $Ph_4P_2N_4Se_2$.

2. Coordination Complexes

Selenium-nitrogen heterocycles are potentially versatile ligands comprised of both soft (Se) and hard (N) donor centers. The insolubility and hazardous nature of Se_4N_4 have impeded investigations of the coordination chemistry of this binary chalcogen nitride. By contrast, the formation of metal complexes from S_4N_4 has received extensive scrutiny. 11,17,18 The higher thermal stability and greater solubility in organic solvents of 1,5-Ph₄P₂N₄Se₂ compared to Se_4N_4 facilitate studies of its coordination behavior and the following bonding modes have been established for this ligand: η^1 -N, η^2 -Se,Se', and η^2 -Se,N- μ , η^1 -Se'. 26,62

The reaction of 1,5-Ph₄P₂N₄Se₂ with the chloro-bridged dimer [PtCl₂(PEt₃)]₂ in CH₂Cl₂ produces the N-bonded adducts [PtCl₂(PEt₃)]_n (1,5-Ph₄P₂N₄Se₂) (n=1,2). The two PtCl₂(PEt₃) groups in the di-adduct (6) are attached to distal nitrogen atoms of the P₂N₄Se₂ ring, which has a folded structure with d(Se–Se) = 2.594 Å.²⁷ This information has been used to estimate a value of 2.65–2.70 Å for the Se–Se distance in 5, cf 2.748(9) Å for Se₄N₄.⁶³

Similar N-bonded adducts of platinum(II) with the sulfur-containing ligand 1,5-Ph₄P₂N₄S₂ have been spectroscopically characterized.⁶⁴

The reaction of 5 with the zero valent metal complexes $Pt(PPh_3)_2(CH_2=CH_2)$ or $Pd(PPh_3)_4$ results in oxidative-addition to give the η^2 -Se,Se'-bonded complexes $M(PPh_3)_2(Ph_4P_2N_4Se_2)$ (M = Pt, Pd).^{27,62} The structures of these products were established by ³¹P and, in particular, ⁷⁷Se NMR spectroscopy.

1,5-Ph₄P₂N₄Se₂ + M(PPh₅)₂L
$$\xrightarrow{\text{toluene, 0 °C}}$$
 M(PPh₃)₂(Ph₄P₂N₄Se₂) (14)
 $M = \text{Pt, L} = \text{C}_2\text{H}_4$ (7a, M = Pt; 7b, M = Pd)
 $M = \text{Pd, L} = \text{2PPh}_3$

When the monometallic complexes 7a or 7b are heated in boiling toluene the loss of one triphenylphosphine ligand occurs to give dimers (Eq. (15)). This process may be reversed upon addition of PPh₃ to the dimers.

The dimers **8a** and **8b** have structures similar to those of the sulfur analogues⁶⁵ on the basis of ³¹P NMR spectroscopic data, i.e., each P₂N₄Se₂ ring acts as a chelating (N, Se) ligand towards one metal and as a bridging ligand through the other selenium to the other metal.

8a, M = Pt; 8b, M = Pd

The variable temperature ³¹P NMR spectra of **8a** and **8b** reveal a fluxional process in which the two heterocyclic phosphorus environments are equivalent on the NMR time scale at room temperature. An interconversion barrier of 9.5 \pm 0.2 kcal mol⁻¹ has been estimated from the NMR data for the Pt complex, cf. 10.2 \pm 0.2 kcal mol⁻¹ for the sulfur analogue. A [1,3]-metallotropic rearrangement involving oscillation of the Pt atoms between vicinal nitrogen atoms and across a selenium atom of each P2N4Se2 ring has been proposed to account for the fluxional behavior.

A complex 9 which combines the η^1 -N and η^2 -Se,Se' bonding modes has been prepared by the reaction of the monoadduct $[PtCl_2(PEt_3)][1,5-Ph_4P_2N_4Se_2]$ with $Pt(CH_2=CH_2)(PPh_3)_2$ in CH_2Cl_2 at -78°C and characterized by ³¹P NMR spectroscopy. ^{26,62}

3. Reactions of 1,3- and 1,5-Ph₄P₂N₄Se₂

The eight-membered rings 1,3- and 1,5-Ph₄P₂N₄Se₂, 4 and 5, are more sensitive to moisture and less thermally stable than their

sulfur analogues. For example, a solution of 1,3-Ph₄P₂N₄Se₂ in CH₂Cl₂ decomposes slowly to give [N(PMe₂NH₂)₂]₂Se in which the selenide ion is involved in strong Se--HN hydrogen-bonding to four NH₂ groups of the surrounding cations. The 1,3-isomer, like its sulfur analogue,⁶⁷ undergoes cycloaddition with norbornadiene, to give an Se,Se'-bonded adduct (10), which was characterized by ¹H and ³¹P NMR spectroscopy.⁶⁸

The lower homologue $Ph_2PN_3Se_2$ (3) is not known, although the sulfur analogue is a well established example of an eight π -electron six-membered ring.⁶⁹ In view of the thermal stability of 1,3- $R_4P_2N_4Se_2$ ring systems, this is probably due to the lack of a suitable synthetic procedure for 3 rather than the inherent instability of the six-membered ring.

The addition of MeCF₃SO₃ to a solution of 1,5-Ph₄P₂N₄Se₂ in CH₂Cl₂ at -78°C produces the N-methylated cation Ph₄P₂N₄· Se₂Me⁺CF₃SO₃⁻ (11).³³ The low field ³¹P NMR chemical shifts of the inequivalent phosphorus atoms in 11 strongly suggest that the cross-ring Se–Se interaction is retained in this cation as has been demonstrated by X-ray crystallography for the S–S bond in the sulfur analogue of 11.⁷⁰

The oxidative-addition of Br_2 or Cl_2 (as SO_2Cl_2) to 1,5- $Ph_4P_2N_4S_2$ occurs smoothly, with retention of the eight-membered ring, to give the S,S'-dihalogeno derivatives 1,5- $Ph_4P_2N_4S_2X_2$ (X = Cl,

Br).⁶⁷ By contrast the reactions of 1,5-Ph₄P₂N₄Se₂ with Br₂ or SO_2Cl_2 , even at $-78^{\circ}C$, result in disintegration of the $P_2N_4Se_2$ ring.⁶⁸ However, the reaction of 1,5-Ph₄P₂N₄Se₂ with I_2 , which does not react with 1,5-Ph₄P₂N₄S₂, produces the diiodo derivative $Ph_4P_2N_4Se_2I_2$ of unknown structure.

The reaction of 1,5-Ph₄P₂N₄Se₂ with phenyl-lithium occurs readily and cleanly in THF at -78° to give Li[Ph₄P₂N₄Se₂Ph]. ⁶² Although the state of aggregation of this lithium derivative is unknown, the corresponding sulfur compound (12) is a centrosymmetric dimer with a step-shaped (ladder structure) and a phenyl group attached to sulfur. ⁷¹

The reaction of Li[Ph₄P₂N₄Se₂Ph] with *cis*-MCl₂(PPh₃)₂ (M = Pt, Pd) at -78° C in THF produces the complexes [MCl(PEt₃)₂(1,5-Ph₄P₂N₄Se₂Ph)] (13) as yellow-orange, air- and moisture-sensitive solids. ⁶² The ³¹P and ⁷⁷Se NMR spectra of these complexes are consistent with a structure similar to that established by X-ray crystallography for a related sulfur complex, ⁷² viz. the P₂N₄E₂ ring (E = S, Se) adopts a chair conformation with symmetry-related PPh₂ groups, but inequivalent PEt₃ ligands. Variable temperature ³¹P NMR data of the Pt derivative 13a reveal a two-site exchange process involving the two PEt₃ ligands with an activation energy of 9.3 kcal mol⁻¹ (cf. 11.0 kcal mol⁻¹ for the corresponding sulfur compound), ⁷² which is proposed to occur by rotation of the PtCl(PEt₃)₂ group around the Pt–Se bond.

Ph
Se
Ph₂
N
P
N
Se
$$Et_3P-M-PEt_3$$
Cl

These n¹-Se bonded derivatives of the Ph₄P₂N₄Se₂Ph⁻ anion represent the first metal complexes of this potentially multidentate ligand for which a versatile coordination chemistry seems likely.

4. Se, Se'-Diorgano Derivatives of the P₂N₄Se₂ Ring

14a, R = Me; 14b, R = Et

The heterocycles 1.5-Ph₄P₂N₄Se₂R₂ (14a, R = Me, 14b, R = Et; 14c. R = Ph) are white solids stable towards exposure to air for several minutes. The Se, Se'-dialkyl derivatives undergo a remarkable solid state transformation at room temperature under a nitrogen atmosphere to give the corresponding 1,3-isomers 15a and 15b in essentially quantitative yields and, subsequently, small amounts of the Se-dealkylated product 1,3-Ph₄P₂N₄Se₂ (4).66

The eight-membered heterocyclic ring in 14a adopts a chair conformation in which the two NPN units are essentially planar and the two Se atoms are displaced on either side of the centrosymmetric ring by 1.07 Å.33.66 An intermolecular process can be envisaged for the isomerization (Eq. (16)),⁶⁶ but there are no significant intermolecular Se-N contacts and the mechanism of this process has not been elucidated.

The Se, Se'-diphenyl derivative 14c does not undergo this isomerization, but thermal decomposition occurs at 140°C to give PhSeSePh and cyclophosphazenes.⁶⁶ Solutions of **14a-c** in boiling toluene (ca. 15 min) or CH₂Cl₂ at room temperature (3–4 days) produce Ph₂P(NH)(NH₂) and dialkyl/aryl diselenides. After several weeks these solutions yield pale yellow crystals of [Ph₂P(NH₂)₂]₂Se in which the Se²⁻ anion is strongly hydrogenbonded to four different Ph₂P(NH₂)₂⁺ cations.⁶⁶ The reaction of **14a-c** with [PtCl₂(PEt₃)]₂ in dichloromethane produces the 2:1 adducts [PtCl₂(PEt₃)]₂[Ph₄P₂N₄Se₂R₂] in which the two platinum(II) atoms are attached to distal nitrogen atoms of the disordered P₂N₄Se₂ ring.⁷³

5. Hybrid Ring Systems

The hybrid six-membered cyclic radicals $Ph_3PCN_3E \cdot (E = S, Se)$ are readily generated by reduction of the corresponding E-Cl derivative with $Ph_3Sb.^{43}$ These radicals are dimers in the solid state with significantly different modes of association. For the sulfurbased radical the dimer is formed through a long S-S bond (ca. 2.49 Å), while the selenium dimer (16) is associated through an Se-N interaction (1.99 Å). The structural parameters within the two rings of 16 are indicative of a cation/anion dimer (i.e., charge transfer) rather than a radical dimer.

TELLURIUM-NITROGEN-PHOSPHORUS RING SYSTEMS

Tellurium chemistry is often significantly different from selenium chemistry owing to the larger size and greater metallic character of tellurium. It is not surprising, therefore, that the chemistry of P-N heterocycles containing tellurium does not resemble that of the Se analogues.

The only known Te-N-P heterocycle is the planar four-membered PN₂Te ring system 17.^{38,39} The Te-N bond distances are

2.056(3) and 2.185(3) Å, and the endocyclic bond angle at Te is 70.3(1)° in 17a³9 (cf. 2.10 and 2.19 Å in PhC(NSiMe₃)₂TeCl₃).³7 The Te-N bonds in these heterocycles are very susceptible to cleavage by a variety of reagents, and attempts to generate P-N-Te rings with tellurium in a lower formal oxidation state, e.g., P₂N₄Te₂, have been unsuccessful. For example, the reaction of 17a with Ph₃Sb produces Te metal, while treatment with ionic fluorides results in cleavage of Te-N bonds.⁷⁴

 $(17a, R = Cl^{39}; 17b, R = aryl^{38})$

NMR STUDIES

The availability of convenient NMR nuclei (77Se, I = $\frac{1}{2}$, 7.6%; ¹²⁵Te, $I = \frac{1}{2}$, 7.0%) provides a useful structural probe for Se-N and Te-N heterocycles that is not accessible for the corresponding S-N compounds. For example, the derivatives 17b could be unambiguously assigned as four-membered PN₂Te rather than eightmembered P₂N₄Te₂ ring systems on the basis of the observation of a doublet (rather than a 1:2:1 triplet) in the 125Te NMR spectrum³⁸ before the structure of 17a was determined by X-ray crystallography.³⁹ The values of ²J(³¹P-¹²⁵Te) for **17a** or **17b** are in the range 84.5–144 Hz.^{38,39} ⁷⁷Se NMR has been particularly useful in establishing the structures of metal complexes of Se-N-P ligands prior to, or in the absence of, X-ray structural determinations. The ⁷⁷Se NMR spectra of 7a and 7b display a multiplet characteristic of an A₂BB'M spin system [where M is a ⁷⁷Se atom in the most abundant isotopomer for which the two PPh3 phosphorus atoms are magnetically inequivalent, but the two ring (Ph₂P) phosphorus atoms

are magnetically *equivalent*]. This information established the η^2 -Se,Se' bonding mode, and the simulation of the ⁷⁷Se NMR spectra provided detailed coupling information.⁶² It is interesting to note that the structure of the corresponding η^2 -S,S' complex of Pt was not established (by X-ray crystallography)^{65b} until 3 years after its discovery.⁷⁵

In another example the ⁷⁷Se NMR spectra of platinum(II) diadducts of 14 provided decisive information in favor of the distal isomer (a) prior to the X-ray structural determination (see Scheme 6). ⁷³ The spectra consist of a virtual triplet characteristic of an AA'X system (where X is ⁷⁷Se for the most abundant isotopomer and the ring phosphorus atoms are magnetically equivalent). The "vicinal" isomer (b) has inequivalent Se atoms that should give rise to two resonances while the Se-coordinated structure (c) (an A₂X system) should generate a 1:2:1 triplet.

SCHEME 6 Isomers of $[PtCl_2(PEt_3)]_2[Ph_4P_2N_4Se_2R_2]$: (a) N-bonded distal, (b) N-bonded vicinal and (c) Se-bonded.

The ⁷⁷Se chemical shifts (rel. to Me₂Se) of 1,5-R₄P₂N₄Se₂ (R = Me, Et, Ph) fall within the narrow range 1066–1076 ppm with 2 J(31 P– 77 Se) = 78–82 Hz, while 6 (77 Se) values for the corresponding 1,3-isomers are 1193–1356 ppm. 27 2 -Se,Se' coordination to Pt of Pd results in a downfield to 830–850 ppm, while 1 -N coordination to platinum(II) produces an upfield shift of ca. 200 Hz. 62 The average values of 2 J(31 P– 77 Se) (ca. 80 Hz) for these metal complexes are changed little from those of the ligands themselves. The 77 Se NMR chemical shifts of 1,3- and 1,5-Ph₄P₂N₄Se₂R₂ (R = Me, Et) are in the range 845–895 ppm 66 and N-coordination to platinum(II) moves this value to 945 ppm for the 1,5-isomer 14a. 73

A recent elegant application of ⁷⁷Se NMR spectroscopy, in conjunction with ¹⁵N NMR, involves the identification of the thermally unstable eight-membered rings (RSeN)₄ from the reaction of seleninic anhydrides with (¹⁵N-enriched) hexamethyldisilazane.⁷⁶

$$(RSeO)_{2}O + 2 HNSiMe_{3} \longrightarrow 1/2 [(RSeN)_{4}]$$

$$(R = Me, ^{1}Pr, Ph) \longrightarrow 2 Me_{3}SiOSiMe_{3} + R_{2}Se_{2} + H_{2}O + N_{2} (17)$$

The tetrameric structure was established by carrying out the above reaction with two different seleninic anhydrides, (PhSeO)₂O and (iPrSeO)₂O. Random oligomerization of the two monomeric units PhSeN and iPrSeN would lead to the cyclic oligomers 18, 19 and 20 (see Scheme 7) which should exhibit 4, 6 and 12 signals, respectively, in their ⁷⁷Se NMR spectra. ⁷⁶

The ⁷⁷Se NMR spectrum of the reaction mixture showed 12 distinct resonances in the 900–1000 ppm region consistent with the

SCHEME 7 Cyclic oligomers formed by random association of RSeN units (where R = Ph or Pr or any combination of Ph and Pr) (see Ref. 76).

TABLE I ESR data for cyclic Se-N radicals.

Radical	g	$a_N(mT)$	Ref.
Ph ₂ P O Se	2.011	0.67	27
Ph.2 P.—N N O Se P.—N Ph2	2.016	0.48	43
Ph. P-N N · Se C-N Ph	2.017	0.14-0.63	43
Ph C—N N O Se C—N Ph	2.017	0.38-0.43	80
Se N O Se Se N	2.043		81
Se_N Se_N	2.046		81
Se-N O-Ph Se N	2.039		28

formation of the cyclic tetramer. In contrast to the structure of 14a,³³ this interpretation assumes the existence of alternating single and double selenium-nitrogen bonds in these ring systems. This assumption is supported by the observation of two different one-bond ⁷⁷Se-¹⁵N couplings in the ⁷⁷Se NMR spectrum of (PhSe¹⁵N)₄.⁷⁶

The identification of the eight-membered rings is particularly significant since the corresponding sulfur systems are unknown with the exception of $(FSN)_4$, for which the S-N bond distances in $(FSN)_4$ alternate between approximately single and double bond values of 1.655(2) and 1.544(2) Å,⁷⁷ respectively, as a result of Jahn-Teller distortion.⁷⁸ Ab initio calculations for the model system $(HSeN)_4$ show that the "tub" conformer, with (slightly) alternating Se-N bond lengths, is more stable than other ring geometrics as a result of π -stabilization and the electrostatic effects of relatively ionic Se-N bonds.⁷⁹ The steric interactions of Se lone pairs is also important in determining the relative stability of various ring conformations for $(HSeN)_4$.

ESR STUDIES

A number of cyclic Se-N radicals have been characterized by ESR spectroscopy and two general trends have emerged (see Table I). First, radicals in which the odd electron is coupled to two selenium atoms tend to have g values of 2.04–2.05 while coupling to only one selenium produces g values of 2.01–2.02. Secondly, the g values of Se-N radicals are generally larger than those of the corresponding S-N radicals as a result of the larger spin-orbit coupling contribution of selenium. ^{24,80} Finally, whereas Se-N radicals have lower stabilities than their S-N analogues in solution, intermolecular interactions between Se-N radicals are stronger than those of S-N systems in the solid state. Consequently the odd electron Se-N compounds are good candidates for the design of molecular conductors. ¹⁰

CONCLUSIONS

The recent discoveries of silicon-nitrogen-selenium reagents and selenium-nitrogen chlorides that are easily prepared and handled

will facilitate the development of the chemistry of Se-N ring systems containing other heteroatoms. The synthetic approaches available for Te-N heterocycles are more limited and, at the moment, restricted to the use of TeCl₄ or [(Me₃Si)₂N]₂Te. Subtle, but significant, differences between the structures of Se-N heterocycles and those of their sulfur analogues may be anticipated. The development of molecular conductors based on cyclic Se-N radicals with strong intermolecular interactions in the solid state is a distinct possibility. The synthesis of hybrid Se-N polymers from cyclic precursors is also an interesting challenge. The differences in the structures and reactivity of Te-N heterocycles compared to their selenium (or sulfur) counterparts are likely to be substantial in view of the larger size and greater metallic character of tellurium. The availability of an informative NMR probe affords a distinct advantage in the study of Se-N and Te-N (as opposed to S-N) compounds.

References

- 1. T. Chivers, Chem. Rev. 85, 341 (1985).
- 2. R. T. Oakley, Prog. Inorg. Chem. 36, 299 (1988).
- H. W. Roesky, K.-L. Weber, U. Seseke, W. Pinkert, M. Noltemeyer, W. Clegg and G. M. Sheldrick, J. Chem. Soc., Dalton Trans. 565 (1985).
- K. B. Sharpless, T. Hori, L. K. Truesdale and C. O. Dietrich, J. Am. Chem. Soc. 98, 269 (1975).
- 5. F. Fockenberg and A. Haas, Z. Naturforsch. 41b, 413 (1986).
- 6. M. Herberhold and W. Jellen, Z. Naturforsch. 41b, 144 (1986).
- J. S. Thrasher, C. W. Bauknight, Jr. and D. D. DesMarteau, Inorg. Chem. 24, 1598 (1985).
- 8. M. M. Labes, P. Love and L. F. Nichols, Chem. Rev. 79, 1 (1979).
- T. Klapötke, Chapter 20 in The Chemistry of Inorganic Ring Systems, ed. R. Steudel (Elsevier, Amsterdam, 1992).
- R. T. Oakley, Chapter 16 in The Chemistry of Inorganic Ring Systems, ed. R. Steudel (Elsevier, Amsterdam, 1992).
- (a) P. F. Kelly, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Chem. Soc. Rev. 246 (1992). (b) J. D. Woollins, Chapter 18 in *The Chemistry of Inorganic Ring Systems*, ed. R. Steudel (Elsevier, Amsterdam, 1992).
- 12. M. Björgvinsson and H. W. Roesky, Polyhedron 10, 2353 (1992).
- T. Chivers, Chapter 15 in The Chemistry of Inorganic Ring Systems, ed. R. Steudel (Elsevier, Amsterdam, 1992).
- V. C. Ginn, P. F. Kelly and J. D. Woollins, J. Chem. Soc., Dalton Trans. 2129 (1992).
- 15. (a) P. K. Gowik and T. M. Klapötke, Spectrochim. Acta. 46A, 1371 (1990).

- (b) E. G. Awere, J. Passmore and P. S. White, J. Chem. Soc., Dalton Trans. 299 (1993).
- 16. J. Siivari, T. Chivers and R. S. Laitinen, Inorg. Chem. 32, 1519 (1993).
- 17. P. F. Kelly and J. D. Woollins, Polyhedron 5, 607 (1986).
- 18. T. Chivers and F. Edelmann, Polyhedron 5, 1661 (1986).
- (a) J. Adel, A. El-Kholi, W. Willing, U. Müller and K. Dehnicke, Chimia 42, 70 (1988).
 (b) J. Adel and K. Dehnicke, Chimia 42, 413 (1988).
- P. F. Kelly, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, J. Chem. Soc., Chem. Commun. 408 (1989).
- 21. J. Siivari, T. Chivers and R. Laitinen, Inorg. Chem. 32 (1993).
- K. V. Katti, U. Seseke and H. W. Roesky, Inorg. Chem. 26, 814 (1987).
- H. W. Roesky, U. Scholz and M. Noltemeyer, Z. Anorg, Allg. Chem. 576, 255 (1989).
- K. Bestari, A. W. Cordes, R. T. Oakley and K. M. Young, J. Am. Chem. Soc. 112, 2249 (1990).
- G. Wolmershäuser, C. R. Brulet and G. B. Street, Inorg. Chem. 17, 3586 (1978).
- T. Chivers, D. D. Doxsee, R. W. Hilts, A. Meetsma, M. Parvez and J. C. van de Grampel, J. Chem. Soc., Chem. Commun. 1330 (1992).
- 27. T. Chivers, D. D. Doxsee and M. Parvez, Inorg. Chem. 32, 2238 (1993).
- P. De. Bel Belluz, A. W. Cordes, E. M. Kristof, P. V. Kristof, S. W. Liblong and R. T. Oakley, J. Am. Chem. Soc. 111, 9276 (1989).
- A. W. Cordes, S. H. Glarum, R. C. Haddon, R. Hallford, R. G. Hicks, D. K. Kennepohl, R. T. Oakley, T. T. M. Palstra and S. R. Scott, J. Chem. Soc., Chem. Commun. 1265 (1992).
- (a) M. P. Andrews, A. W. Cordes, D. C. Douglass, R. M. Fleming, S. H. Glarum, R. C. Haddon, P. Marsh, R. T. Oakley, T. T. M. Palstra, L. F. Schneemeyer, G. W. Trucks, R. Tycko, J. V. Waszcak, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc. 113, 3559 (1991). (b) A. W. Cordes, R. C. Haddon, R. T. Oakley, L. F. Schneemeyer, J. A. Waszcak, K. M. Young and N. M. Zimmerman, J. Am. Chem. Soc. 113, 582 (1991).
- J. Ernest, W. Holick, G. Rihs, D. Schomburg, G. Shoham, D. Wenkert and R. B. Woodward, J. Am. Chem. Soc. 103, 1540 (1981).
- 32. V. Chandrasekhar and T. Chivers, unpublished observations.
- T. Chivers, D. D. Doxsee and J. F. Fait, J. Chem. Soc., Chem. Commun. 1703 (1989).
- T. Chivers, S. S. Kumaravel, A. Meetsma, J. C. van de Grampel and A. van der Lee, Inorg. Chem. 29, 4591 (1990).
- V. Chandrasekhar, T. Chivers, J. F. Fait and S. S. Kumaravel, J. Am. Chem. Soc. 112, 5373 (1990).
- V. Chandrasekhar, T. Chivers, S. S. Kumaravel, M. Parvez and M. N. S. Rao, Inorg. Chem. 30, 4125 (1991).
- 37. E. Hey, C. Ergezinger and K. Dehnicke, Z. Naturforsch. 44b, 205 (1989).
- T. Chivers and M. N. S. Rao, Phosphorus, Sulfur, Silicon and Related Elements 69, 197 (1992).
- 39. T. Chivers, D. D. Doxsee and M. Parvez, unpublished results.
- H. W. Roesky, J. Münzenberg and M. Noltemeyer, Angew. Chem., Int. Ed. Engl. 29, 61 (1990).
- J. Münzenberg, H. W. Roesky, S. Besser, R. Herbst-Irmer and G. M. Sheldrick, Inorg. Chem. 31, 2986 (1992).
- (a) A. Haas, J. Kasprowski and M. Pryka, Chem. Ber. 125, 1537 (1992).
 (b) A. Haas, J. Kasprowski and M. Pryka, J. Chem. Soc., Chem. Commun, 1144 (1992).

- K. Bestari, A. W. Cordes, R. T. Oakley and K. M. Young, J. Am. Chem. Soc. 112, 2249 (1990).
- M. Björgvinsson, H. W. Roesky, F. Pauer, D. Stalke and G. M. Sheldrick, Inorg. Chem. 29, 5140 (1990).
- 45. A. Haas and J. Kasprowski, Chimia 44, 57 (1990).
- A. Haas, J. Kasprowski, K. Angermund, P. Betz, C. Krüger, Y.-H. Tsay and S. Werner, Chem. Ber. 124, 1895 (1991).
- J. Siivari, T. Chivers and R. S. Laitinen, Angew. Chem., Int. Ed. Engl. 31, 1518 (1992).
- M. Björgvinsson, T. Heinze, H. W. Roesky, F. Pauer, D. Stalke and G. M. Sheldrick, Angew. Chem., Int. Ed. Engl. 30, 1677 (1992).
- M. Broschag, T. M. Klapötke, I. C. Tornieporth-Oetting and P. S. White, J. Chem. Soc., Chem. Commun. 1390 (1992).
- R. Wollert, A. Höllwarth, G. Frenking, D. Fenske, H. Goesman and K. Dehnicke, Angew. Chem., Int. Ed. Engl. 31, 1251 (1992).
- R. Wollert, B. Neumüller and K. Dehnicke, Z. Anorg. Allg. Chem. 616, 191 (1992).
- 52. T. Chivers and R. T. Oakley, Top. Curr. Chem. 102, 117 (1982).
- 53. T. Chivers and K. J. Schmidt, Can. J. Chem. 70, 719 (1992).
- P. F. Kelly, I. P. Parkin, A. M. Z. Slawin, D. J. Williams and J. D. Woollins, Angew. Chem., Int. Ed. Engl. 28, 1047 (1989).
- 55. I. P. Parkin and J. D. Woollins, J. Chem. Soc., Dalton Trans. 925 (1990).
- 56. P. F. Kelly and J. D. Woollins, Polyhedron 12, 1129 (1993).
- 57. A. Haas and J. Kasprowski, Chimia 41, 340 (1987).
- 58. A. Haas and R. Pohl, Chimia 43, 261 (1989).
- 59. A. Haas and J. Kasprowski, Chimia 42, 343 (1988).
- 60. A. Haas, J. Kasprowski and M. Pryka, Chem. Ber. 125, 789 (1992).
- (a) T. Chivers, M. N. S. Rao and J. F. Richardson, J. Chem. Soc., Chem. Commun. 186 (1983).
 (b) R. T. Oakley, J. Chem. Soc., Chem. Commun. 596 (1986).
- 62. T. Chivers, D. D. Doxsee and R. W. Hilts, Inorg. Chem. 32, 3244 (1993).
- 63. H. Bärnighausen, T. v. Volkman and J. Jander, Acta Crystallogr. 21, 571 (1966).
- T. Chivers and R. W. Hilts, Inorg. Chem. 31, 5272 (1992).
- (a) T. Chivers, M. Edwards, P. N. Kapoor, A. Meetsma, A. van der Lee and J. C. van de Grampel, Inorg. Chem. 29, 3068 (1990).
 (b) T. Chivers, M. Edwards, A. Meetsma, J. C. van de Grampel and A. van der Lee, Inorg. Chem. 31, 2156 (1992).
- T. Chivers, D. D. Doxsee, J. F. Fait and M. Parvez, Inorg. Chem. 32, 2243 (1993).
- N. Burford, T. Chivers, M. N. S. Rao and J. F. Richardson, Inorg. Chem. 23, 1946 (1984).
- D. D. Doxsee, Ph.D. Thesis, The University of Calgary, Calgary, Alberta, Canada, 1992.
- N. Burford, T. Chivers, A. W. Cordes, W. G. Laidlaw, M. Noble, R. T. Oakley and P. N. Swepston, J. Am. Chem. Soc. 104, 1282 (1982).
- T. Chivers, G. Dénès, S. W. Liblong and J. F. Richardson, Inorg. Chem. 28, 3683 (1989).
- T. Chivers, M. Edwards, R. W. Hilts, M. Parvez and R. Vollmerhaus, J. Chem. Soc., Chem. Commun. (1993) in press.
- T. Chivers, M. Edwards, R. W. Hilts, A. Meetsma and J. C. van de Grampel, J. Chem. Soc., Dalton Trans. 3053 (1992).
- T. Chivers, D. D. Doxsee, R. W. Hilts and M. Parvez, Can. J. Chem. 71 (1993) in press.

- 74. T. Chivers, D. D. Doxsee and X. Gao, unpublished results.
- T. Chivers, K. S. Dhathathreyan and T. Ziegler, J. Chem. Soc., Chem. Commun. 86 (1989).
- 76. D. H. R. Barton and S. I. Parekh, J. Am. Chem. Soc. 115, 948 (1993).
- 77. D. Gregson, G. Klebe and H. Fuess, Acta Crystallogr. C47, 1784 (1991).
- M. H. Palmer, R. T. Oakley and N. P. C. Westwood, Chem. Phys. 131, 255 (1989).
- D. H. R. Barton, M. B. Hall, Z. Lin and S. Parekh, J. Am. Chem. Soc. 115, 955 (1993).
- R. T. Oakley, R. W. Reed, A. W. Cordes, S. L. Craig and J. B. Graham, J. Am. Chem. Soc. 109, 7745 (1987).
- 81. E. G. Awere, J. Passmore, P. S. White and T. Klapötke, J. Chem. Soc., Chem. Commun. 1415 (1989).